Value Added Co-product from *Jatropha*
Biodiesel Production Process

Rakshit K. Devappa
1. Introduction: *Jatropha*
2. Seed cake/kernel meal: Nutritional value
3. Detoxification: Current status
4. Approaches to improvise detoxification
Jatropha curcas

- **Origin:** Central American countries

- **Common names:** physic nut, pig nut, purging nut etc.

- **Distribution and habitat:**
 - Dry regions of tropics
 - Rainfall: 11.8" – 39.4"
 - Altitude: 0-500 m
 - Annual temp. (Avg): 65 °F

- **Botanical features**
 - Euphorbiaceae family
 - Small tree or shrub
 - When cut exudes white latex
 - Grows to 9 -16 feet
 - Yield (5-7 mt/h)

Multipurpose uses
Future *Jatropha* Production

Production of seeds

~28 billion pounds

Considering (28% oil)

Production of oil

7.84 billion gallons

Considering

- 248 gallons oil/acre
- *Cultivation* -31.63 million acres

Source: GEXSI market study on Jatropha (2008)

Production of:

(a) Defatted kernel meal

7.4 billion pounds

Considering:

- 63:37 = Kernel:shell
- 58% oil in kernel

(b) Defatted Seed cake

20.16 billion pounds

Considering:

- 28% oil recovery from seeds
Jatropha curcas Processing

Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany
How Good is *Jatropha* as Fish Feed?

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Market share (%)</th>
<th>Energy (MJ/kg DM)</th>
<th>Protein (%)</th>
<th>Fibre (NDF %)</th>
<th>Antinutritional factors</th>
<th>Detoxification treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean meal</td>
<td>70</td>
<td>12</td>
<td>50 -53</td>
<td>6</td>
<td>Trypsin inhibitor, phytic acid, lectins, bitter taste, oligosacharides</td>
<td>Heat treatment and solvent extraction</td>
</tr>
<tr>
<td>Rapeseed Meal</td>
<td>12</td>
<td>12</td>
<td>39</td>
<td>12-14</td>
<td>Glucosinolates</td>
<td>Controlled feeding studies</td>
</tr>
<tr>
<td>Sunflower meal</td>
<td>6</td>
<td>9.5</td>
<td>37</td>
<td>15</td>
<td>Chlorogenic acid</td>
<td>Washing</td>
</tr>
<tr>
<td>Cotton meal</td>
<td>6</td>
<td>11.5</td>
<td>40</td>
<td>15</td>
<td>Gossypol</td>
<td>Controlled feeding levels, breeding, solvent extraction</td>
</tr>
<tr>
<td>Jatropha kernel meal</td>
<td>0</td>
<td>18</td>
<td>55-64</td>
<td>10</td>
<td>Phorbol esters, curcin, trypsin inhibitor, lectin, saponin, phytate</td>
<td>Chemical and solvent</td>
</tr>
</tbody>
</table>

Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany
Chemical Composition of Toxic and Nontoxic Defatted *Jatropha curcas* Kernels

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Variety (Jatropha Curcas)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toxic</td>
<td>Nontoxic</td>
</tr>
<tr>
<td>Crude protein (%)</td>
<td>56-65</td>
<td>63.8</td>
</tr>
<tr>
<td>Lipid (%)</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>9.6</td>
<td>9.8</td>
</tr>
<tr>
<td>Gross energy (MJ/kg)</td>
<td>18.2</td>
<td>18</td>
</tr>
<tr>
<td>Neutral Detergent Fibre (%)</td>
<td>9.0</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany

Non toxic *Jatropha platyphyllla* seeds

Toxic *Jatropha curcas* seeds
Quality of Amino Acid Profile (g/100 g protein)

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Cape Verde genotype</th>
<th>Nontoxic Mexican genotype</th>
<th>Protein Isolate</th>
<th>Soybean</th>
<th>Essential amino acid requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fish</td>
</tr>
<tr>
<td>Lysine</td>
<td>4.28</td>
<td>3.4</td>
<td>3</td>
<td>6.08</td>
<td>4.1-6.1</td>
</tr>
<tr>
<td>Leucine</td>
<td>6.94</td>
<td>7.5</td>
<td>7.08</td>
<td>7.72</td>
<td>2.8-5.3</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>4.53</td>
<td>4.85</td>
<td>4.47</td>
<td>4.62</td>
<td>2.0-4.0</td>
</tr>
<tr>
<td>Methionine</td>
<td>1.91</td>
<td>1.76</td>
<td>1.66</td>
<td>1.22</td>
<td>2.2-6.5<sup>a</sup></td>
</tr>
<tr>
<td>Cystine</td>
<td>2.24</td>
<td>1.58</td>
<td>1.34</td>
<td>1.70</td>
<td>5.0-6.5</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>4.34</td>
<td>4.89</td>
<td>5.42</td>
<td>4.84</td>
<td>5.0-6.5<sup>b</sup></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>2.99</td>
<td>3.78</td>
<td>3.2</td>
<td>3.39</td>
<td>-</td>
</tr>
<tr>
<td>Valine</td>
<td>5.19</td>
<td>5.3</td>
<td>5.18</td>
<td>4.59</td>
<td>2.3-4.0</td>
</tr>
<tr>
<td>Histidine</td>
<td>3.3</td>
<td>3.08</td>
<td>3.51</td>
<td>2.50</td>
<td>1.3-2.1</td>
</tr>
<tr>
<td>Threonine</td>
<td>3.96</td>
<td>3.59</td>
<td>3.56</td>
<td>3.76</td>
<td>2.0-4.0</td>
</tr>
</tbody>
</table>

^a requirement varies depending on the amount of cystine in the diet

^b requirement varies depending upon the amount of tyrosine in the diet

[#] in the absence of cystine

[*] in the absence of tyrosine

Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany
Antinutrient/toxic Constituents Present in Toxic and Nontoxic Defatted *Jatropha curcas* Kernel meal*

<table>
<thead>
<tr>
<th>Component</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toxic</td>
</tr>
<tr>
<td>Phorbol ester (PEs; mg/g)</td>
<td>3.00</td>
</tr>
<tr>
<td>Total phenols (% tannic acid equivalent)</td>
<td>0.36</td>
</tr>
<tr>
<td>Tannins (% tannic acid equivalent)</td>
<td>0.04</td>
</tr>
<tr>
<td>Phytates (% dry matter)</td>
<td>9.40</td>
</tr>
<tr>
<td>Saponins (% diosgenin equivalent)</td>
<td>2.60</td>
</tr>
<tr>
<td>Trypsin inhibitor (mg trypsin inhibited per g sample)</td>
<td>21.30</td>
</tr>
<tr>
<td>Lectins (1/mg of meal that produced haemagglutination per ml of assay medium)</td>
<td>102</td>
</tr>
</tbody>
</table>

*Expressed on dry matter basis

Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany
Toxicity of *Jatropha* Seeds

Mice: LD$_{50}$ 27 mg/kg Bd. wt.
Goat and sheep: 0.05 g/kg/day in diet
Chicks: 0.1% seed in diet
Molluscs: 3 ppm of ethanol extract
Fish: 15 ppm PEs in diet
Pig: 0.8 mg/g PEs in diet
Humans: No authenticated studies

- 6 types of phorbol esters.
- Heat stable, Tumour promoters
- After pressing: 70% of PEs in oil + 30% of PEs in seed cake
- Quantification: HPLC method, LCMS

Source: Haas et al., 2002; Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany
Detoxification of *Jatropha* Cake/Kernel Meal

Criteria:

1. **Favourable:** Process should be fast, cost effective, phorbol esters (PEs) should be reduced to undetectable level in HPLC, exhibit no toxicity in bioassays and in animal trials.

2. **Not favourable:** time consuming, PEs reduced below or level similar to nontoxic genotypes of Jatropha containing PEs.

Current detoxification methods to remove PEs

1. **Solvent** – effective, time consuming
2. **Chemical** – effective, bit harsh on the amino acid profile
3. **Enzymatic** – promising but not completely effective
4. **Microbial** - time consuming, potentially effective
Effect of Detoxification on *Jatropha* Cake/Kernel Meal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Untreated Jatropha kernel meal</th>
<th>Treated Jatropha Kernel meal</th>
<th>Soy bean meal</th>
<th>FAO**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein (% DM basis)</td>
<td>64.0</td>
<td>63.0</td>
<td>50-53</td>
<td></td>
</tr>
<tr>
<td>Amino acid (g/16 g N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td>1.84</td>
<td>1.55</td>
<td>1.22</td>
<td>2.50</td>
</tr>
<tr>
<td>Cystine</td>
<td>1.51</td>
<td>1.36</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>3.60</td>
<td>3.36</td>
<td>6.10</td>
<td>5.80</td>
</tr>
<tr>
<td>Protein digestibility % (pepsin + pancreatin)</td>
<td>95.2</td>
<td>85.8</td>
<td>91-95</td>
<td></td>
</tr>
</tbody>
</table>

**Ref. Protein for growing child

Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany
Is Detoxified* * Jatropha Kernel Meal Fit for Aqua Feed

Upto 50% protein replacement in fishmeal based diet (lysine + phytase added) growth performance equivalent to control.

MGR: Metabolic growth rate

Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany
Histopathology in Fish (*Cyprinus carpio*)

NO significant changes observed when fed on detoxified *Jatropha kernel meal* when compared to Fish meal based diet.

- Palatability
- Nutrient digestibility and digestive enzymes
- Growth
- Energy metabolism
- Growth hormone and IGF encoding genes
- Clinical markers enzymes
- Gut morphology
- No toxicity in - liver, kidney, intestine, stomach, heart
- No toxicity - serum biochemical characteristics: glucose and cholesterol levels, haemoglobin, haematocrit and triglyceride

Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany

Detoxified* *Jatropha* Meal in Animal Feed

Poultry: (10% and 20% in maize + soybean meal based diet)
- Digestibility of AA from DJKM in young turkeys is very high in comparison with data from other feeds

Pig: (25 and 50% replacement of soybean iso-nitrogenous diet)
- No histopathological or serum biochemical parameters were altered
- Detoxified Jatropha meal could replace up to 50% of soybean meal protein with no significant change in growth and feed conversion ratio.

Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany
Summary

- Jatropha kernel meal/seed cake is rich in protein.
- Kernel meal/seed cake contain phorbol esters as toxic constituent.
- Kernel meal/seed cake can be detoxified.
- Detoxified meal has a high acceptability when fed to animals (fish, poultry and pig).
- Inclusion of detoxified meal did not affect the growth and health of fish.
Acknowledgements

Prof. Dr. Klaus Becker
Prof. Dr. Harinder PS Makkar
Dr. Vikas Kumar

Mr. Clyde S. Tamaru
Mr. Lee Jakeway
Ms. Kelly King
Information Sources

1. University of Hohenheim website: https://jatropha.uni-hohenheim.de/
2. Vikas Kumar, PhD thesis submitted to the University of Hohenheim (2010).